Next: About this document ...
Up: Survey on Independent Component
Previous: Nomenclature:
- 1
-
S. Amari, A. Cichocki, and H.H. Yang.
A new learning algorithm for blind source separation.
In Advances in Neural Information Processing 8, pages 757-763.
MIT Press, Cambridge, MA, 1996.
- 2
-
S.-I. Amari.
Neural learning in structured parameter spaces -- natural riemannian
gradient.
In Advances in Neural Information Processing 9, pages 127-133.
MIT Press, Cambridge, MA, 1997.
- 3
-
S.-I. Amari and A. Cichocki.
Adaptive blind signal processing - neural network approaches.
Proceedings of the IEEE, 9, 1998.
- 4
-
J.J. Atick.
Entropy minimization: A design principle for sensory perception?
International Journal of Neural Systems, 3:81-90, 1992.
Supp. 1992.
- 5
-
Y. Bar-Ness.
Bootstrapping adaptive interference cancellers: Some practical
limitations.
In The Globecom Conf., pages 1251-1255, Miami, 1982.
Paper F3.7.
- 6
-
H. B. Barlow.
Possible principles underlying the transformations of sensory
messages.
In W. A. Rosenblith, editor, Sensory Communication, pages
217-234. MIT Press, 1961.
- 7
-
H. B. Barlow.
Single units and sensation: A neuron doctrine for perceptual
psychology?
Perception, 1:371-394, 1972.
- 8
-
H.B. Barlow.
Unsupervised learning.
Neural Computation, 1:295-311, 1989.
- 9
-
H.B. Barlow.
What is the computational goal of the neocortex ?
In C. Koch and J.L. Davis, editors, Large-scale neuronal
theories of the brain. MIT Press, Cambridge, MA, 1994.
- 10
-
H.B. Barlow, T.P. Kaushal, and G.J. Mitchison.
Finding minimum entropy codes.
Neural Computation, 1:412-423, 1989.
- 11
-
M. S. Bartlett.
A note on the multiplying factors for various chi-square
approximations.
J. Roy. Stat. Soc., 16 ser B:296-298, 1989.
- 12
-
A.J. Bell and T.J. Sejnowski.
An information-maximization approach to blind separation and blind
deconvolution.
Neural Computation, 7:1129-1159, 1995.
- 13
-
A.J. Bell and T.J. Sejnowski.
Learning higher-order structure of a natural sound.
Network, 7:261-266, 1996.
- 14
-
A.J. Bell and T.J. Sejnowski.
The 'independent components' of natural scenes are edge filters.
Vision Research, 37:3327-3338, 1997.
- 15
-
A. Belouchrani and J.-F. Cardoso.
Maximum likelihood source separation by the expectation-maximization
technique: deterministic and stochastic implementation.
In Proc. NOLTA, pages 49-53, 1995.
- 16
-
A. Belouchrani, K. Abed Meraim, J.-F. Cardoso, and E. Moulines.
A blind source separation technique based on second order statistics.
IEEE Trans. on S.P., 45(2):434-44, 1997.
- 17
-
C. M. Bishop, M. Svensen, and C. K. I. Williams.
GTM: The generative topographic mapping.
Neural Computation, 10:215-234, 1998.
- 18
-
V. Capdevielle, Ch. Serviere, and J.Lacoume.
Blind separation of wide-band sources in the frequency domain.
In Proc. ICASSP-95, volume 3, pages 2080-2083, Detroit,
Michigan, USA, May 9-12 1995.
- 19
-
J.-F. Cardoso.
Source separation using higher order moments.
In Proc. ICASSP'89, pages 2109-2112, 1989.
- 20
-
J.-F. Cardoso.
Eigen-structure of the fourth-order cumulant tensor with application
to the blind source separation problem.
In Proc. ICASSP'90, pages 2655-2658, Albuquerque, NM, USA,
1990.
- 21
-
J.-F. Cardoso.
Super-symmetric decomposition of the fourth-order cumulant tensor.
blind identification of more sources than sensors.
In Proc. ICASSP'91, pages 3109-3112, 1991.
- 22
-
J.-F. Cardoso.
Iterative techniques for blind source separation using only
fourth-order cumulants.
In Proc. EUSIPCO, pages 739-742, Brussels, Belgium, 1992.
- 23
-
J.-F. Cardoso.
Infomax and maximum likelihood for source separation.
IEEE Letters on Signal Processing, 4:112-114, 1997.
- 24
-
J.-F. Cardoso.
Blind signal separation: statistical principles.
Proceedings of the IEEE, 9(10):2009-2025, 1998.
- 25
-
J. F. Cardoso.
Multidimensional independent component analysis.
In Proc. ICASSP'98, Seattle, WA, 1998.
- 26
-
J. F. Cardoso.
Entropic contrasts for source separation.
In S. Haykin, editor, Adaptive Unsupervised Learning. 1999.
- 27
-
J.-F. Cardoso and P. Comon.
Independent component analysis, a survey of some algebraic methods.
In Proc. ISCAS'96, volume 2, pages 93-96, 1996.
- 28
-
J.-F. Cardoso and B. Hvam Laheld.
Equivariant adaptive source separation.
IEEE Trans. on Signal Processing, 44(12):3017-3030, 1996.
- 29
-
J.-F. Cardoso and A. Souloumiac.
Blind beamforming for non Gaussian signals.
IEE Proceedings-F, 140(6):362-370, 1993.
- 30
-
A. Cichocki, R.E. Bogner, L. Moszczynski, and K. Pope.
Modified Herault-Jutten algorithms for blind separation of
sources.
Digital Signal Processing, 7:80 - 93, 1997.
- 31
-
A. Cichocki, S. C. Douglas, and S.-I. Amari.
Robust techniques for independent component analysis with noisy data.
Neurocomputing, 22:113-129, 1998.
- 32
-
A. Cichocki and R. Unbehauen.
Neural Networks for Signal Processing and Optimization.
Wiley, 1994.
- 33
-
A. Cichocki and R. Unbehauen.
Robust neural networks with on-line learning for blind identification
and blind separation of sources.
IEEE Trans. on Circuits and Systems, 43(11):894-906, 1996.
- 34
-
A. Cichocki, R. Unbehauen, L. Moszczynski, and E. Rummert.
A new on-line adaptive algorithm for blind separation of source
signals.
In Proc. Int. Symposium on Artificial Neural Networks ISANN-94,
pages 406-411, Tainan, Taiwan, 1994.
- 35
-
P. Comon.
Blind identification in presence of noise.
In Signal Processing VI: Theories and Application (Proc.
EUSIPCO), pages 835-838. Elsevier, 1992.
- 36
-
P. Comon.
Independent component analysis - a new concept?
Signal Processing, 36:287-314, 1994.
- 37
-
D. Cook, A. Buja, and J. Cabrera.
Projection pursuit indexes based on orthonormal function expansions.
J. of Computational and Graphical Statistics, 2(3):225-250,
1993.
- 38
-
J. G. Daugman.
Entropy reduction and decorrelation in visual coding by oriented
neural receptive fields.
IEEE Trans. on Biomedical Engineering, 36:107-114, 1989.
- 39
-
G. Deco and D. Obradovic.
Linear redundancy reduction learning.
Neural Networks, 8(5):751-755, 1995.
- 40
-
N. Delfosse and P. Loubaton.
Adaptive blind separation of independent sources: a deflation
approach.
Signal Processing, 45:59-83, 1995.
- 41
-
N. Delfosse and P. Loubaton.
Adaptive blind separation of convolutive mixtures.
In Proc. ICASSP'96, pages 2940-2943, 1996.
- 42
-
D. Donoho.
On minimum entropy deconvolution.
In Applied Time Series Analysis II, pages 565-608. Academic
Press, 1981.
- 43
-
S.C. Douglas, A. Cichocki, , and S. Amari.
A bias removal technique for blind source separation with noisy
measurements.
Electronics Letters, 34:1379-1380, 1998.
- 44
-
D.J. Field.
What is the goal of sensory coding?
Neural Computation, 6:559-601, 1994.
- 45
-
J. H. Friedman and J. W. Tukey.
A projection pursuit algorithm for exploratory data analysis.
IEEE Trans. of Computers, c-23(9):881-890, 1974.
- 46
-
J.H. Friedman.
Exploratory projection pursuit.
J. of the American Statistical Association, 82(397):249-266,
1987.
- 47
-
C. Fyfe and R. Baddeley.
Non-linear data structure extraction using simple Hebbian networks.
Biological Cybernetics, 72:533-541, 1995.
- 48
-
X. Giannakopoulos, J. Karhunen, and E. Oja.
Experimental comparison of neural ICA algorithms.
In Proc. Int. Conf. on Artificial Neural Networks
(ICANN'98), pages 651-656, Skövde, Sweden, 1998.
- 49
-
M. Girolami and C. Fyfe.
An extended exploratory projection pursuit network with linear and
nonlinear anti-hebbian connections applied to the cocktail party problem.
Neural Networks, 10:1607-1618, 1997.
- 50
-
F.R. Hampel, E.M. Ronchetti, P.J. Rousseuw, and W.A. Stahel.
Robust Statistics.
Wiley, 1986.
- 51
-
H. H. Harman.
Modern Factor Analysis.
University of Chicago Press, 2nd edition, 1967.
- 52
-
T. Hastie and W. Stuetzle.
Principal curves.
Journal of the American Statistical Association, 84:502-516,
1989.
- 53
-
S. Haykin, editor.
Blind Deconvolution.
Prentice-Hall, 1994.
- 54
-
S. Haykin.
Adaptive Filter Theory.
Prentice-Hall International, 3rd edition, 1996.
- 55
-
R. Hecht-Nielsen.
Replicator neural networks for universal optimal source coding.
Science, 269:1860-1863, 1995.
- 56
-
P.J. Huber.
Robust Statistics.
Wiley, 1981.
- 57
-
P.J. Huber.
Projection pursuit.
The Annals of Statistics, 13(2):435-475, 1985.
- 58
-
J. Hurri, A. Hyvärinen, and E. Oja.
Wavelets and natural image statistics.
In Proc. Scandinavian Conf. on Image Analysis '97, Lappenranta,
Finland, 1997.
- 59
-
A. Hyvärinen.
Purely local neural principal component and independent component
learning.
In Proc. Int. Conf. on Artificial Neural Networks, pages
139-144, Bochum, Germany, 1996.
- 60
-
A. Hyvärinen.
A family of fixed-point algorithms for independent component
analysis.
In Proc. IEEE Int. Conf. on Acoustics, Speech and Signal
Processing (ICASSP'97), pages 3917-3920, Munich, Germany, 1997.
- 61
-
A. Hyvärinen.
Independent component analysis by minimization of mutual information.
Technical Report A46, Helsinki University of Technology, Laboratory
of Computer and Information Science, 1997.
- 62
-
A. Hyvärinen.
One-unit contrast functions for independent component analysis: A
statistical analysis.
In Neural Networks for Signal Processing VII (Proc. IEEE
Workshop on Neural Networks for Signal Processing), pages 388-397, Amelia
Island, Florida, 1997.
- 63
-
A. Hyvärinen.
Independent component analysis in the presence of gaussian noise by
maximizing joint likelihood.
Neurocomputing, 22:49-67, 1998.
- 64
-
A. Hyvärinen.
New approximations of differential entropy for independent component
analysis and projection pursuit.
In Advances in Neural Information Processing Systems 10, pages
273-279. MIT Press, 1998.
- 65
-
A. Hyvärinen.
Fast and robust fixed-point algorithms for independent component
analysis.
IEEE Trans. on Neural Networks, 1999.
To appear.
- 66
-
A. Hyvärinen.
Fast independent component analysis with noisy data using gaussian
moments.
In Proc. Int. Symp. on Circuits and Systems, Orlando,
Florida, 1999.
To appear.
- 67
-
A. Hyvärinen.
The fixed-point algorithm and maximum likelihood estimation for
independent component analysis.
Neural Processing Letters, 1999.
To appear.
- 68
-
A. Hyvärinen.
Sparse code shrinkage: Denoising of nongaussian data by maximum
likelihood estimation.
Neural Computation, 1999.
Submitted.
- 69
-
A. Hyvärinen, R. Cristescu, and E. Oja.
A fast algorithm for estimating overcomplete ICA bases for image
windows.
In Proc. Int. Joint Conf. on Neural Networks, Washington,
D.C., 1999.
- 70
-
A. Hyvärinen and P. Hoyer.
Independent subspace analysis shows emergence of phase and shift
invariant features from natural images.
In Proc. Int. Joint Conf. on Neural Networks, Washington,
D.C., 1999.
- 71
-
A. Hyvärinen and E. Oja.
Simple neuron models for independent component analysis.
Int. Journal of Neural Systems, 7(6):671-687, 1996.
- 72
-
A. Hyvärinen and E. Oja.
A fast fixed-point algorithm for independent component analysis.
Neural Computation, 9(7):1483-1492, 1997.
- 73
-
A. Hyvärinen and E. Oja.
Independent component analysis by general nonlinear Hebbian-like
learning rules.
Signal Processing, 64(3):301-313, 1998.
- 74
-
A. Hyvärinen, E. Oja, P. Hoyer, and J. Hurri.
Image feature extraction by sparse coding and independent component
analysis.
In Proc. Int. Conf. on Pattern Recognition (ICPR'98), pages
1268-1273, Brisbane, Australia, 1998.
- 75
-
A. Hyvärinen and P. Pajunen.
Nonlinear independent component analysis: Existence and uniqueness
results.
Neural Networks, 12(3):429-439, 1999.
- 76
-
A. Hyvärinen, J. Särelä, and R. Vigário.
Spikes and bumps: Artefacts generated by independent component
analysis with insufficient sample size.
In Proc. Int. Workshop on Independent Component Analysis and
Signal Separation (ICA'99), pages 425-429, Aussois, France, 1999.
- 77
-
I.T. Jolliffe.
Principal Component Analysis.
Springer-Verlag, 1986.
- 78
-
M.C. Jones and R. Sibson.
What is projection pursuit ?
J. of the Royal Statistical Society, ser. A, 150:1-36, 1987.
- 79
-
C. Jutten.
Calcul neuromimétique et traitement du signal, analyse en
composantes indépendentes.
PhD thesis, INPG, Univ. Grenoble, 1987.
(in French).
- 80
-
C. Jutten and J. Herault.
Blind separation of sources, part I: An adaptive algorithm based on
neuromimetic architecture.
Signal Processing, 24:1-10, 1991.
- 81
-
J. Karhunen, A. Hyvärinen, R. Vigario, J. Hurri, and E. Oja.
Applications of neural blind separation to signal and image
processing.
In Proc. IEEE Int. Conf. on Acoustics, Speech and Signal
Processing (ICASSP'97), pages 131-134, Munich, Germany, 1997.
- 82
-
J. Karhunen and J. Joutsensalo.
Representation and separation of signals using nonlinear PCA type
learning.
Neural Networks, 7(1):113-127, 1994.
- 83
-
J. Karhunen and J. Joutsensalo.
Generalizations of principal component analysis, optimization
problems, and neural networks.
Neural Networks, 8(4):549-562, 1995.
- 84
-
J. Karhunen, E. Oja, L. Wang, R. Vigario, and J. Joutsensalo.
A class of neural networks for independent component analysis.
IEEE Trans. on Neural Networks, 8(3):486-504, 1997.
- 85
-
J. Karhunen and P. Pajunen.
Blind source separation using least-squares type adaptive algorithms.
In Proc. IEEE Int. Conf. on Acoustics, Speech and Signal
Processing (ICASSP'97), pages 3048-3051, Munich, Germany, 1997.
- 86
-
J. Karhunen, P. Pajunen, and E. Oja.
The nonlinear PCA criterion in blind source separation: Relations
with other approaches.
Neurocomputing, 22:5-20, 1998.
- 87
-
M. Kendall.
Multivariate Analysis.
Charles Griffin&Co., 1975.
- 88
-
M. Kendall and A. Stuart.
The Advanced Theory of Statistics.
Charles Griffin & Company, 1958.
- 89
-
K. Kiviluoto and E. Oja.
Independent component analysis for parallel financial time series.
In Proc. ICONIP'98, volume 2, pages 895-898, Tokyo, Japan,
1998.
- 90
-
T. Kohonen.
Self-Organizing Maps.
Springer-Verlag, Berlin, Heidelberg, New York, 1995.
- 91
-
Beate Laheld and Jean-François Cardoso.
Adaptive source separation with uniform performance.
In Proc. EUSIPCO, pages 183-186, Edinburgh, 1994.
- 92
-
R. H. Lambert.
Multichannel Blind Deconvolution: FIR Matrix Algebra and
Separation of Multipath Mixtures.
PhD thesis, Univ. of Southern California, 1996.
- 93
-
L. De Lathauwer, B. De Moor, and J. Vandewalle.
A technique for higher-order-only blind source separation.
In Proc. ICONIP, Hong Kong, 1996.
- 94
-
D. N. Lawley.
Test of significance of the latent roots of the covariance and
correlation matrices.
Biometrica, 43:128-136, 1956.
- 95
-
T.-W. Lee, M. Girolami, A.J. Bell, and T.J. Sejnowski.
A unifying information-theoretic framework for independent component
analysis.
International Journal on Mathematical and Computer Models,
1999.
To appear.
- 96
-
T.-W. Lee, M. Girolami, and T. J. Sejnowski.
Independent component analysis using an extended infomax algorithm
for mixed sub-gaussian and super-gaussian sources.
Neural Computation, pages 609-633, 1998.
11.
- 97
-
T-W. Lee, B.U. Koehler, and R. Orglmeister.
Blind source separation of nonlinear mixing models.
In Neural networks for Signal Processing VII, pages 406-415,
1997.
- 98
-
M. Lewicki and B. Olshausen.
Inferring sparse, overcomplete image codes using an efficient coding
framework.
In Advances in Neural Information Processing 10
(Proc. NIPS*97), pages 815-821. MIT Press, 1998.
- 99
-
M. Lewicki and T. J. Sejnowski.
Learing overcomplete representations.
In Advances in Neural Information Processing 10
(Proc. NIPS*97), pages 556-562. MIT Press, 1998.
- 100
-
U. Lindgren, T. Wigren, and H. Broman.
On local convergence of a class of blind separation algorithms.
IEEE Trans. on Signal Processing, 43:3054-3058, 1995.
- 101
-
S. Makeig, A.J. Bell, T.-P. Jung, and T.-J. Sejnowski.
Independent component analysis of electroencephalographic data.
In Advances in Neural Information PRocessing Systems 8, pages
145-151. MIT Press, 1996.
- 102
-
S. G. Mallat.
A theory for multiresolution signal decomposition: The wavelet
representation.
IEEE Trans. on PAMI, 11:674-693, 1989.
- 103
-
Z. Malouche and O. Macchi.
Extended anti-Hebbian adaptation for unsupervised source
extraction.
In Proc. ICASSP'96, pages 1664-1667, Atlanta, Georgia, 1996.
- 104
-
M. McKeown, S. Makeig, S. Brown, T.-P. Jung, S. Kindermann, A.J. Bell,
V. Iragui, and T. Sejnowski.
Blind separation of functional magnetic resonance imaging (fMRI)
data.
Human Brain Mapping, 6(5-6):368-372, 1998.
- 105
-
L. Molgedey and H. G. Schuster.
Separation of a mixture of independent signals using time delayed
correlations.
Phys. Rev. Lett., 72:3634-3636, 1994.
- 106
-
E. Moreau and O. Macchi.
New self-adaptive algorithms for source separation based on contrast
functions.
In Proc. IEEE Signal Processing Workshop on Higher Order
Statistics, pages 215-219, Lake Tahoe, USA, June 1993.
- 107
-
E. Moulines, J.-F. Cardoso, and E. Gassiat.
Maximum likelihood for blind separation and deconvolution of noisy
signals using mixture models.
In Proc. IEEE Int. Conf. on Acoustics, Speech and Signal
Processing (ICASSP'97), pages 3617-3620, Munich, Germany, 1997.
- 108
-
J.-P. Nadal and N. Parga.
Non-linear neurons in the low noise limit: a factorial code maximizes
information transfer.
Network, 5:565-581, 1994.
- 109
-
C. Nikias and J. Mendel.
Signal processing with higher-order spectra.
IEEE Signal Processing Magazine, pages 10-37, July 1993.
- 110
-
E. Oja.
A simplified neuron model as a principal component analyzer.
J. of Mathematical Biology, 15:267-273, 1982.
- 111
-
E. Oja.
Neural networks, principal components, and subspaces.
Int. J. on Neural Systems, 1:61-68, 1989.
- 112
-
E. Oja.
The nonlinear PCA learning rule in independent component analysis.
Neurocomputing, 17(1):25-46, 1997.
- 113
-
E. Oja.
Nonlinear PCA criterion and maximum likelihood in independent
component analysis.
In Proc. Int. Workshop on Independent Component Analysis and
Signal Separation (ICA'99), pages 143-148, Aussois, France, 1999.
- 114
-
E. Oja and J. Karhunen.
On stochastic approximation of the eigenvectors and eigenvalues of
the expectation of a random matrix.
Journal of Math. Analysis and Applications, 106:69-84, 1985.
- 115
-
E. Oja, H. Ogawa, and J. Wangviwattana.
Learning in nonlinear constrained Hebbian networks.
In T. Kohonen et al., editor, Artificial Neural Networks,
Proc. ICANN'91, pages 385-390, Espoo, Finland, 1991. North-Holland,
Amsterdam.
- 116
-
B. A. Olshausen and D. J. Field.
Emergence of simple-cell receptive field properties by learning a
sparse code for natural images.
Nature, 381:607-609, 1996.
- 117
-
B. A. Olshausen and D. J. Field.
Natural image statistics and efficient coding.
Network, 7(2):333-340, May 1996.
- 118
-
B. A. Olshausen and D. J. Field.
Sparse coding with an overcomplete basis set: A strategy employed by
V1?
Vision Research, 37:3311-3325, 1997.
- 119
-
P. Pajunen.
Blind source separation using algorithmic information theory.
Neurocomputing, 22:35-48, 1998.
- 120
-
P. Pajunen, A. Hyvärinen, and J. Karhunen.
Nonlinear blind source separation by self-organizing maps.
In Proc. Int. Conf. on Neural Information Processing, pages
1207-1210, Hong Kong, 1996.
- 121
-
P. Pajunen and J. Karhunen.
A maximum likelihood approach to nonlinear blind source separation.
In Proceedings of the 1997 Int. Conf. on Artificial Neural
Networks (ICANN'97), pages 541-546, Lausanne, Switzerland, 1997.
- 122
-
Athanasios Papoulis.
Probability, Random Variables, and Stochastic Processes.
McGraw-Hill, 3rd edition, 1991.
- 123
-
B.A. Pearlmutter and L.C. Parra.
A context-sensitive generalization of ICA.
In Proc. ICONIP'96, pages 151-157, Hong Kong, 1996.
- 124
-
D.-T. Pham, P. Garrat, and C. Jutten.
Separation of a mixture of independent sources through a maximum
likelihood approach.
In Proc. EUSIPCO, pages 771-774, 1992.
- 125
-
T. Ristaniemi and J. Joutsensalo.
On the performance of blind source separation in CDMA downlink.
In Proc. Int. Workshop on Independent Component Analysis and
Signal Separation (ICA'99), pages 437-441, Aussois, France, 1999.
- 126
-
Y. Sato.
A method for self-recovering equalization for multilevel
amplitude-modulation system.
IEEE Trans. on Communications, 23:679-682, 1975.
- 127
-
M. Schervish.
Theory of Statistics.
Springer, 1995.
- 128
-
J. Schmidhuber, M. Eldracher, and B. Foltin.
Semilinear predictability minimization produces well-known feature
detectors.
Neural Computation, 8:773-786, 1996.
- 129
-
O. Shalvi and E. Weinstein.
New criteria for blind deconvolution of nonminimum phase systems
(channels).
IEEE Trans. on Information Theory, 36(2):312-321, 1990.
- 130
-
O. Shalvi and E. Weinstein.
Super-exponential methods for blind deconvolution.
IEEE Trans. on Information Theory, 39(2):504:519, 1993.
- 131
-
E. Sorouchyari.
Blind separation of sources, Part III: Stability analysis.
Signal Processing, 24:21-29, 1991.
- 132
-
J. Sun.
Some practical aspects of exploratory projection pursuit.
SIAM J. of Sci. Comput., 14:68-80, 1993.
- 133
-
A. Taleb and C. Jutten.
Nonlinear source separation: The postlinear mixtures.
In Proc. European Symposium on Artificial Neural Networks,
pages 279-284, Bruges, Belgium, 1997.
- 134
-
H.-L. Nguyen Thi and C. Jutten.
Blind source separation for convolutive mixtures.
Signal Processing, 45:209-229, 1995.
- 135
-
L. Tong, R.-W. Liu, V.C. Soon, and Y.-F. Huang.
Indeterminacy and identifiability of blind identification.
IEEE Trans. on Circuits and Systems, 38, 1991.
- 136
-
L. Tong, V. Soo, R. Liu, and Y. Huang.
Amuse: a new blind identification algorithm.
In Proc. ISCAS, New Orleans, USA, 1990.
- 137
-
K. Torkkola.
Blind separation of delayed sources based on information
maximization.
In Proc. ICASSP'96, pages 3509-3512, Atlanta, Georgia, 1996.
- 138
-
J. H. van Hateren and D. L. Ruderman.
Independent component analysis of natural image sequences yields
spatiotemporal filters similar to simple cells in primary visual cortex.
Proc. Royal Society ser. B, 265:2315-2320, 1998.
- 139
-
J. H. van Hateren and A. van der Schaaf.
Independent component filters of natural images compared with simple
cells in primary visual cortex.
Proc. Royal Society ser. B, 265:359-366, 1998.
- 140
-
R. Vigário.
Extraction of ocular artifacts from EEG using independent component
analysis.
Electroenceph. clin. Neurophysiol., 103(3):395-404, 1997.
- 141
-
R. Vigário, V. Jousmäki, M. Hämäläinen, R. Hari, and E. Oja.
Independent component analysis for identification of artifacts in
magnetoencephalographic recordings.
In Advances in Neural Information Processing 10 (Proc.
NIPS'97), pages 229-235, Cambridge, MA, 1998. MIT Press.
- 142
-
R. Vigário, J. Särelä, and E. Oja.
Independent component analysis in wave decomposition of auditory
evoked fields.
In Proc. Int. Conf. on Artificial Neural Networks
(ICANN'98), pages 287-292, Skövde, Sweden, 1998.
- 143
-
R. Vigário, J. Särelä, V. Jousmäki, and E. Oja.
Independent component analysis in decomposition of auditory and
somatosensory evoked fields.
In Proc. Int. Workshop on Independent Component Analysis and
Signal Separation (ICA'99), pages 167-172, Aussois, France, 1999.
- 144
-
H. Wang and M. Kaveh.
Coherent signal-subspace processing for the detection and estimation
of angles of arrival of multiple wide-band sources.
IEEE Trans. on ASSP, 33:823-831, 1985.
- 145
-
L.-Y. Wang and J. Karhunen.
A unified neural bigradient algorithm for robust PCA and MCA.
Int. J. of Neural Systems, 7(1):53-67, 1996.
- 146
-
M. Wax and T. Kailath.
Detection of signals by information-theoretic criteria.
IEEE Trans. on ASSP, 33:387-392, 1985.
- 147
-
E. Weinstein, M. Feder, and A. V. Oppenheim.
Multi-channel signal separation by decorrelation.
IEEE Trans. on SAP, 1:405-413, 1993.
- 148
-
R. A. Wiggins.
Minimum entropy deconvolution.
Geoexploration, 16:12-35, 1978.
- 149
-
D. Yellin and E. Weinstein.
Criteria for multichannel signal separation.
IEEE Trans. on Signal Processing, 42:2158-2167, 1994.
- 150
-
D. Yellin and E. Weinstein.
Multichannel signal separation: Methods and analysis.
IEEE Trans. on Signal Processing, 44:106-118, 1996.
Aapo Hyvarinen
1999-04-23